
Journal of Computational Physics 214 (2006) 224–238

www.elsevier.com/locate/jcp
Fast numerical solution of the electromagnetic medium
scattering problem and applications to the inverse problem

Thorsten Hohage *

Institut für Numerische und Angewandte Mathematik, Georg-August-Universitat, Lotzestr. 16-18, 37083 Göttingen, Germany

Received 7 October 2004; received in revised form 4 July 2005; accepted 19 September 2005
Available online 11 November 2005
Abstract

We propose a method for computing the scattering of a time-harmonic electromagnetic wave in a medium with a locally
perturbed refractive index. We prove that it converges of arbitrarily high order depending on the smoothness of the refrac-
tive index and that the time complexity is O(N3 log(N)). As an application we solve the corresponding inverse problem
using a preconditioned Newton method and discuss how to compute the Fréchet derivative of the solution operator
and its adjoint by the proposed method. The performance of both the forward and the inverse solver is illustrated in a
number of numerical experiments.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The scattering of electromagnetic waves in a medium with a locally perturbed refractive index is a fun-
damental problem which arises in medical imaging, scanning near-field microscopy, detection of buried
objects, and geophysical explorations. We derive an extension of Vainikko�s fast solver for the acoustic
Lippmann–Schwinger equation [1] to electromagnetic problems. The proposed method is easy to implement,
it converges of arbitrarily high order for smooth refractive indices, and its total complexity is of order
O(N3 lnN) where N is the number of degrees of freedom in each space dimension. Therefore, it is an attrac-
tive alternative to the finite element method. As opposed to FEM, no transparent boundary condition is
needed since the radiation condition is incorporated in a natural way through an integral formulation of
the forward problem. As a disadvantage of our method, we point out that we do not know how to handle
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refractive indices with jumps so far. For acoustic problems Vainikko has shown convergence of order
O(N�2 lnN) in this case, but due to the lack of regularity, this result cannot be carried over to electromag-
netic problems in a straightforward way.

Often the inverse problem to reconstruct the refractive index of a medium from noisy measurements of the
scattered field is more important in applications than the forward problem. We also discuss the use of the pro-
posed forward solver in iterative regularization methods and show how to implement the Fréchet derivative of
the solution operator and its adjoint needed in such schemes.

Our aim is to solve the inverse problem for single-frequency data in the regime of wave numbers in the res-
onance region and refractive indices of a size where the problem is both strongly nonlinear and severely ill-
posed. To this end, we use a preconditioned Newton method as suggested in [2]. This method is well-suited
for large-scale nonlinear, exponentially ill-posed problems since it yields accurate reconstructions and signif-
icantly reduces the number of forward problem solutions compared to other regularization methods. We dis-
cuss the implementation of this method for the inverse electromagnetic medium scattering problem and
present numerical results.

Let us review some methods which have been proposed in the literature for the full reconstruction of
the refractive index. Natterer, Vögeler and Wübbeling [3,4] have developed an algorithm for the solution
of the inverse problem in the case of large wave numbers. They solve the forward problem approximately
by a marching scheme in space and the inverse problem by Kaczmarz�s algorithm. Their approach is
restricted to the important regime of large wave numbers where the large-scale structure of the refractive
index can be reconstructed in a stable way. Bao and Li [5] have proposed a method for multi-frequency
data where one iteration step is performed for each frequency starting with the lowest one (see also Chen
[6]). This reduces the danger of being trapped in a local minimum. To identify the support of the pertur-
bation of the refractive index, Haddar and Monk [7] used a linear sampling method and Kirsch [8] inves-
tigated a factorization method. Several researchers have considered the linearized problem (see [9] and
references therein). Kleinman and van den Berg have proposed to formulate the inverse problem as an
optimization problem both in the refractive index (or its perturbation) and the total electric field (see
[10] and references therein). The usefulness of this approach for three-dimensional electromagnetic inver-
sions is limited by extremely large memory requirements as the total fields for all incident waves need to
be stored.

The plan of this paper is as follows: After giving a precise definition of the forward problem and its equiv-
alent formulation as the Lippmann–Schwinger integral equation in the following section, we describe our for-
ward solver in Section 3 and provide an error analysis of this method. Section 4 is devoted to the numerical
solution of the discrete system by multi-grid methods and includes a convergence and complexity analysis.
Numerical experiments on the performance of the forward solver are presented in Section 5. In Section 6,
we discuss the implementation of the Fréchet derivative of the solution operator and its adjoint. Finally, in
Section 7 we introduce a preconditioned Newton method for the solution of the inverse problem and present
numerical results.

2. Forward scattering problem

2.1. Problem formulation

We consider the propagation of time-harmonic electromagnetic waves in an inhomogeneous, non-magnetic,
isotropic medium without free charges. Let the time dependence of the electric field ~E be described by
~Eðx; tÞ ¼ RðEðxÞe�ixtÞ where x > 0 is the angular frequency. Moreover, let �(x) > 0 denote the electric permit-
tivity of the medium, r(x) the electric conductivity, and l0 the magnetic permeability, which is assumed to be
constant. We further assume that �(x) = �0 and r(x) = 0 for jxjP q, i.e., the inhomogeneity of the medium is
supported in the ball Bq :¼ fx 2 R3 : jxj < qg of radius q > 0. Then the vector field E : R3 ! C3 satisfies the
differential equation
curl curl E� j2ð1� aðxÞÞE ¼ 0 in R3; ð1Þ

where j ¼ x

ffiffiffiffiffiffiffiffiffi
�0l0

p
is the wave number and
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1� aðxÞ ¼ nðxÞ ¼ 1

�0
�ðxÞ þ i

rðxÞ
x

� �
; x 2 R3
is the refractive index of the medium. We assume that n 2 C1;aðR3Þ. Note that suppa � Bq.
The forward scattering problem is the following: Given an incident field Ei which satisfies the homogeneous

Maxwell equations
curl curl Ei � j2Ei ¼ 0 in R3 ð2Þ

find a scattered fields Es 2 C2ðR3;C3Þ such that the total field E = Ei + Es solves the Maxwell equations (1),
and the scattered field satisfies the Silver–Müller radiation condition
lim
jxj!1

ðcurl EsðxÞ � x� ijjxjEsðxÞÞ ¼ 0 ð3Þ
uniformly for all directions x̂ ¼ x=jxj 2 S2.

2.2. Electromagnetic Lippmann–Schwinger equation

Our numerical method is based on an equivalent formulation of the forward problem as an integral equa-
tion. For proofs and further information we refer to [11]. Let
UðxÞ :¼ eijjxj

4pjxj ; x 2 R3 n f0g
denote the fundamental solution to the Helmholtz equation. If E 2 C2ðR3;C3Þ is a solution to the direct scat-
tering problem (1)–(3), then it satisfies the integral equation
EðxÞ þ j2

Z
Bq

Uðx� yÞaðyÞEðyÞdyþ grad

Z
Bq

Uðx� yÞ gradaðyÞ
1� aðyÞ � EðyÞdy ¼ EiðxÞ; x 2 R3; ð4Þ
which is the analog to the acoustic Lippmann–Schwinger equation. Vice versa, if E 2 CðR3;C3Þ is a solution
to (4), then E 2 C2ðR3;C3Þ, and E solves the direct scattering problem (1)–(3). Note that if E is given on Bq,
then it is known everywhere since we can solve (4) for E(x). It follows from the mapping properties of the
volume potential that the operator on the left hand side of (4) is of the form ‘‘identity + compact’’. Hence,
by Riesz theory and the uniqueness of the forward problem (cf. [11]), Eq. (4) has a unique solution
E 2 (L2(Bq))

3.

2.3. Far-field patterns

It can be shown that a solution to (4) has the asymptotic behavior
EsðxÞ ¼ eijjxj

jxj E1ðx̂Þ þ O
1

jxj

� �� �
.

E1 is called the far-field pattern of Es and satisfies x̂ � E1ðx̂Þ ¼ 0 for all x̂ 2 S2, i.e., it is a tangential vector
field on the unit sphere. From (4) we obtain the formula
E1ðx̂Þ ¼ �j2

Z
Bq

e�ijx̂�y

4p
aðyÞEðyÞdy� ijx̂

Z
Bq

e�ijx̂�y

4p
gradaðyÞ
1� aðyÞ � EðyÞdy; ð5Þ
after a straightforward computation. Since the far-field pattern is a tangential field, i.e., the orthogonal pro-
jection x̂� E1ðx̂Þ � x̂ of E1ðx̂Þ onto the tangent plane at x̂ coincides with E1ðx̂Þ, it follows that E1 = Z(aE)
with the far-field operator Z: L2(Bq)

3! L2(S2)3 defined by
ðZuÞðx̂Þ :¼ �j2x̂�
Z
Bq

e�ijx̂�y

4p
uðyÞdy� x̂. ð6Þ
This formula was used in our computations to evaluate the far-field pattern.
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3. Discretization of the electromagnetic Lippmann–Schwinger equation

Concerning the numerical solution of the electromagnetic Lippmann–Schwinger equation (4), the main
complication compared to the acoustic case are caused by the last term on the left hand side. This term is
responsible for worse mapping properties of the integral operator, and it does not allow us to use aE as
new unknown after multiplying the equation by a.

3.1. Periodization

Let f : R3 ! C3 and k : R3 ! C be the 4q-periodic functions in x1, x2, and x3 defined by
fðxÞ :¼ vðxÞEiðxÞ; kðxÞ :¼ j2UðxÞ; jxj < 2q;

0; jxjP 2q

�

for x 2 G2q :¼ fx 2 R3 : jxjj < 2q; j ¼ 1; 2; 3g. Here v : R3 ! R is a smooth cut-off function satisfying v(x) = 1
for |x| 6 q and suppv � G2q, It is also possible to use smooth convolution kernels k, but in a three-dimensional
setting this does not improve the mapping properties of the convolution operator, which are determined by the
singularity of U. Therefore, we do not consider this possibility here. Furthermore, we introduce the function
bðxÞ :¼ gradaðxÞ
j2ð1� aðxÞÞ ; x 2 R3.
Note that b(x) is well defined since Ren(x) > 0 for all x. As k(x) = j2U(x) for |x| 6 2q, a function ~E 2 L2ðBqÞ3
satisfies
~EðxÞ þ
Z
Bq

kðx� yÞaðyÞ~EðyÞdyþ grad

Z
Bq

kðx� yÞbðyÞ � ~EðyÞdy ¼ fðxÞ
for all x 2 Bq if and only if it satisfies (4) for x 2 Bq. Given a solution ~E to the previous equation, a solution E

to (4) can be computed by
EðxÞ :¼ EiðxÞ � j2

Z
Bq

Uðx� yÞaðyÞ~EðyÞdy� j2grad

Z
Bq

Uðx� yÞbðyÞ � ~EðyÞdy
for x 2 R3. Instead of E we will consider the multi-periodic function
uðxÞ :¼ fðxÞ �
Z
Bq

kðx� yÞaðyÞ~EðyÞdy� grad

Z
Bq

kðx� yÞbðyÞ � ~EðyÞdy;
x 2 R3 in the following. u satisfies the periodic Lippmann–Schwinger equation
uðxÞ þ
Z
G2q

kðx� yÞaðyÞuðyÞdyþ grad

Z
G2q

kðx� yÞbðyÞ � uðyÞdy ¼ fðxÞ
for x 2 G2q. With the convolution operator K: L2(G2q)! L2(G2q),
ðKvÞðxÞ :¼
Z
G2q

kðx� yÞvðyÞdy; x 2 G2q; ð7Þ
its component-wise application K: L2(G2q)
3! L2(G2q)

3, and the abbreviations Au := K(au), Bu := grad

K(b Æ u), this equation can be written as
uþ Auþ Bu ¼ f. ð8Þ
3.2. Discretization

Let
ujðxÞ :¼ ð4qÞ
�3=2 exp

ip
2q

j � x
� �

; j 2 Z3; x 2 R3
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denote the trigonometric orthonormal basis of L2(G2q) and let TN :¼ spanfuj : j 2 Z3
Ng where Z3

N :¼
fj 2 Z3 : � N

2
6 j1; j2; j3 <

N
2
g. The orthogonal projection of L2(G2q) onto TN is given by
PNv :¼
X
j2Z3

N

v̂ðjÞuj; v̂ðjÞ :¼
Z
G2q

vuj dx.
The trigonometric interpolation operator QN : CðG2qÞ !TN maps a function v 2 C(G2q) to the unique trigo-
nometric polynomial Qnv 2TN satisfying
ðQNvÞðhjÞ ¼ vðhjÞ for all j 2 Z3
N ;
where h ¼ 4q
N . Moreover, we define PN ;QN : L2ðG2qÞ3 !T3

n as the component-wise application of the opera-
tors PN and QN, respectively.

Note that a complete system of eigenvectors and eigenvalues of the convolution operator K defined in (7) is
given by
Kuj ¼ ð4qÞ
3=2k̂ðjÞuj; j 2 Z3. ð9Þ
We approximate the periodic Lippmann–Schwinger equation (8) by
uN þ ANuN þ BNuN ¼ QN f; ð10Þ

where
ANv :¼ KQN ðaPNvÞ; BNv :¼ gradKQN ðb � PNvÞ.
Due to (9) any solution uN to (10) belongs to T3
N . Therefore, we would obtain the same approximate solutions

uN if we replaced PN by I in the definitions of AN and BN. However, to analyze the computation of the adjoint
as discussed in Section 6, we need estimates of iA � ANi = i(A � AN)*i and iB � BNi = i(B � BN)*i (in norms
to be specified below) with AN and BN as just defined. Moreover, the operator PN in the definition of AN and
BN will be needed in Section 4 on multi-grid methods.

3.3. Error analysis

For k 2 R let Hk denote the periodic Sobolev space on G2q with the norm
kvkk :¼
X
j2Z3

ð1þ jjj2Þkjv̂ðjÞj2
0@ 1A1=2
and Hk := (Hk)3 with norm kvkk :¼ ð
P3

k¼1kvkk
2
kÞ

1=2. Here jjj :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j21 þ j22 þ j23

q
for j 2 Z3. The Fourier coeffi-

cients of the convolution kernel k have been computed in [1]: If p|j| 6¼ R, R := 2qj, then ðK̂N Þ0 ¼ ð4qÞ
�3=2

ðeRið1� RiÞ � 1Þ and
ðK̂N Þj ¼
R2ð4qÞ�3=2

p2jjj2 � R2
1� eRi cosðpjjjÞ � i

R
pjjj sinðpjjjÞ

� �� �
; j 6¼ 0;
otherwise ðK̂N Þj ¼ �i2
�1=2Rð4qÞ�3=2ð1� eRiR�1 sinðRÞÞ. Since jk̂ðjÞj ¼ Oðjjj�2Þ, we have K 2 L(Hk,Hk+2) for all

kP 0 by virtue of (9). The identity
dðgradvÞðjÞ ¼ ip
2q

jv̂ðjÞ ð11Þ
implies that grad 2 L(Hk+1,Hk) for all k P 0. Finally, we need the estimate ivwik 6 civikiwik, which holds for
k > 3

2
with c > 0 independent of v,w 2 Hk (cf. [1]). Let us assume that n 2 Hl with l > 5

2
. Putting everything

together, we find that A 2 L(Hk,Hk+2) for 0 6 k 6 l and B 2 L(Hk,Hk+1) for 0 6 k 6 l � 1. The compact-
ness of the embedding H k1 ,!H k2 for k1 > k2 implies that A and B are compact in L(Hk,Hk). Since uniqueness
is inherited from (4), we obtain unique solvability of (8) in Hk, 0 6 k 6 l � 1 for all right hand sides f using
Riesz theory.
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To analyze the approximation (10), we need the following estimates (cf. [12]):
kðQN � IÞvkk 6 cN k�lkvkl; 0 6 k 6 l; l P 3=2; ð12Þ
kðPN � IÞvkk 6 cN k�lkvkl; 0 6 k 6 l. ð13Þ
Here and in the following c > 0 denotes a generic constant whose value may change from line to line.

Lemma 1. Let n 2 Hl with l > 5
2 and 1 6 k 6 l. Then there exists a constant c > 0 such that
kðAN þ BN � A� BÞukk 6 cN k�lkukl�1 ð14Þ
for all u 2 Hl� 1 and all N 2 N.

Proof. We will use the fact that for v 2 Hs and w 2 Ht with s > 3/2 and t 2 [0, s] we have vw 2 Ht and
ivwit 6 civisiwit (For t = s see [1], and the case t = 0 follows from the continuity of the embedding L1W Hs.
Now the statement for t 2 (0, s) can be obtained by interpolation.) Therefore, au 2 Hl� 1, and we get
kANu� Aukk 6 kKkk k�1kQN ðaPNuÞ � aukk�1 6 cðkðQN � IÞðaPNuÞkk�1 þ kaðPN � IÞukk�1Þ
6 cðN k�lkaPNukl�1 þ kakl�1 � kðPN � IÞukk�1Þ 6 cN k�lkukl�1
using (12) and (13). Moreover, we have b 2 Hl� 1 and b Æ u 2 Hl� 1 under the given assumptions. Therefore,
we obtain
kBNu� Bukk 6 kgradKkk k�1kQN ðb � PNuÞ � b � ukk�1 6 cðkðQN � IÞðb � PNuÞkk�1 þ kb � ðPN � IÞukk�1Þ
6 cN k�lkukl�1
as above. Combining these inequalities yields (14). h

Theorem 2. Let l > 5
2
, 1 6 k 6 l, and assume that n 2 Hl and f 2 Hl. Let u 2 Hl� 1 denote the unique solution

to (8). Then there exist constants N 0 2 N and c > 0 such that (10) has a unique solution uN for all N P N0 and
kuN � ukk 6 cN k�lðkukl�1 þ kfklÞ. ð15Þ
Proof. Since I + A + B is boundedly invertible in Hk, it follows from (14) by a Neumann series argument that
I + AN + BN is boundedly invertible in Hk for N P N0 and that
kðIþ AN þ BN Þ�1kk k 6 c for all N P N 0 ð16Þ

with a constant c independent of N. Therefore, (10) has a unique solution for NP N0. Subtracting (8) from
(10) yields the identity
ðIþ AN þ BN ÞðuN � uÞ ¼ QN f � f þ ðAþ B� AN � BNÞu.

Using (12), (14) and (16) we obtain
kuN � ukk 6 c kðQN � IÞfkk þ kðAþ B� AN � BN Þukkð Þ 6 cN k�lðkfkl þ kukl�1Þ. �
Since f 2 C1, Theorem 2 implies that the proposed discretization scheme converges of arbitrarily high
order as N!1 depending on the smoothness of the refractive index n. In particular, we have super-algebraic
convergence for n 2 C1.
4. Solution of the discrete system

4.1. Implementation of the operator AN + BN

Next we discuss how the application of the operator AN + BN can be implemented by FFT without the need
to set up a matrix. For w 2 C(G2q) let wN denote the vector of nodal values w(hj), j 2 Z3

N , and ŵN the vector of
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the Fourier coefficients ŵðjÞ of w for j 2 Z3
N . The application of the matrix F N :¼ expð� 2pi

N k � jÞ
� �

j;k2Z3
N
corre-

sponds to the Fast Fourier Transform. We have ŵN ¼ ð4qÞ3=2N�3F NwN and wN ¼ ð4qÞ�3=2F �N ŵN for w 2TN .

It will be convenient to identify the vector wN with the mapping Z3
N ! C given by wN(j) = w(hj). For a vec-

tor valued function w 2 C(G2q)
3 we define wN ; ŵN : Z3

N ! C3 by wN(j) := w(hj) and ŵN ðjÞ :¼ ŵðjÞ; j 2 Z3
N .

Again, FN denotes the component-wise application of FN.
For v;w : Z3

N ! C and v;w : Z3
N ! C3, we introduce the following binary operations:
ðv� wÞ : Z3
N ! C; ðv� wÞðjÞ :¼ vðjÞTwðjÞ;

ðv � wÞ : Z3
N ! C; ðv � wÞðjÞ :¼ vðjÞwðjÞ;

ðv � wÞ; ðw � vÞ : Z3
N ! C3; ðv � wÞðjÞ :¼ ðw � vÞðjÞ :¼ vðjÞwðjÞ.
The gradient of a trigonometric polynomial v 2TN is given by ðgradvÞN ¼ F�Nðĝ � F NvN Þ where ĝ : Z3
N ! C3 is

defined by ĝðjÞ :¼ ip
2q j. Finally, we use the relation ðKwÞN ¼ F �N K̂NF NwN ; w 2TN with K̂N :¼ ð4qÞ3=2N�3k̂N ,

which follows from (9).
Using these notations and the fact the every solution to (10) belongs to T3

N , it follows that Eq. (10) (an
operator equation in Hk) is equivalent to the fully discrete system
ûN þ K̂N � FN ðaN � ðF�N ûN ÞÞ þ ĝN � K̂N � F N ðbN � ðF�N ûN ÞÞ ¼ dðQN fÞN ; ð17Þ
which we shortly write as
ûN þ TN ûN ¼ dðQN fÞN . ð18Þ
4.2. Solution of the discrete system

Since the matrix TN in (18) is large and dense, it usually does not fit into the storage of a computer. There-
fore, (18) has to be solved by iterative method using (17) to implement matrix–vector products with TN. One
option is the conjugate gradient method applied to the normal equation (CGNE). Due to (16) the condition
numbers of the operators I + TN are uniformly bounded by a constant c
kðIþ TN Þ�1kk kkIþ TNkk k 6 c
for NP N0 and k P 1. Therefore, the error of the jth CGNE-iterate u
ðjÞ
N is bounded by
kuðjÞN � uNkk 6 c
c� 1

cþ 1

� �j

kuð0ÞN � uNkk ð19Þ
with a constant c independent of N (see, e.g. [13]). To be consistent with theory, we have to work in spaces Hk

with k P 1. This corresponds to solving the preconditioned equation
KkðIN þ TNÞK�1k v̂N ¼ Kk
dðQN fÞN ð20Þ
for v̂N ¼ KkûN with ðKkûN ÞðjÞ :¼ ð1þ jjj2Þk=2ûN ðjÞ; j 2 Z3
N . Since we observed little differences in the results

when replacing (18) by (20), we will work with (18) in the following for simplicity.
Another possibility is to solve Eq. (18) by the GMRES method (see [13]). Although no convergence esti-

mates are available in this case, GMRES was more efficient then CGNE in our numerical experiments, espe-
cially for large wave numbers.

4.3. Multi-grid methods

A more efficient method to solve (18) is a two-grid iteration. We multiply (18) by the inverse (I + TM)�1 of
the operator corresponding to a coarser discretization level M < N and rewrite the resulting equation as a
fixed-point equation:
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u
ð0Þ
N :¼ ðIþ TMÞ�1QN f; ð21aÞ

u
ðjÞ
N :¼ ðIþ TMÞ�1 ðTM � TN Þuðj�1ÞN þQN f

n o
; j ¼ 1; 2; . . . ð21bÞ
To derive a fully discrete analog of (21b), recall that we interpret the vector ûN 2 C3jZ3
N j as a mapping

ûN : Z3
N ! C3 and that we introduced the matrix TN 2 C3jZ3

N j�3jZ
3
N j in (18) via its action (18) on a vector ûN .

Let RN ;M 2 C3jZ3
M j�3jZ

3
N j be the restriction matrix defined by ðRN ;M ûN ÞðjÞ ¼ ûN ðjÞ for j 2 Z3

M . Its adjoint
R�N ;M 2 C3jZ3

N j�3jZ
3
M j is the prolongation matrix given by
ðR�N ;M ûMÞðjÞ ¼
ûMðjÞ; j 2 Z3

M ;

0; j 2 Z3
N n Z3

M .

(

Moreover, we define the projection PN ;M :¼ IN � R�N ;MRN ;M onto the high frequency components in C3jZ3

N j.
With these notations the matrix version of the two-grid iteration (21b) is
û
ðjÞ
N :¼ PN ;M þ R�N ;MðIM þ TMÞ�1RN ;M

� 	
ðR�N ;MTMRN ;M � TN Þûðj�1ÞN þ f̂N

n o
.

To apply the operator I + TM (i.e., solve equations on the coarse grid) we can use CGNE or GMRES as de-
scribed above. Since vectors on the coarse grid required much less storage, we usually do not run into memory
problems with GMRES even though all previous iterates have to be stored.

Another idea, leading to multi-grid methods, is to approximate (I + TM)�1 by using a two-grid method
on an even coarser grid. Let N1 < N2 < � � � < NL be a sequence of discretization levels. For simplicity we
restrict ourselves to a V-cycle scheme, i.e., we assume that just one iterations of the form (21b) is performed
on each level. For a given right hand side f this leads to the following recursive definition of the multi-grid
approximations MGlðv̂; f̂Þ � û to the solution of ûþ TNl û ¼ f̂Nl given an initial guess v̂ 2 C

3jZ3
Nl
j
and a right

hand side f̂ 2 C
3jZ3

Nl
j
:

MGlðv̂; f̂Þ :¼ PNl;Nl�1 ŵþ R�Nl;Nl�1
MGl�1ðRNl;Nl�1 v̂;RNl;Nl�1 ŵÞ;
where ŵ :¼ ðTNl�1 � TNlÞv̂þ f̂Nl .
On the coarsest level l = 1 we solve the equation exactly,
MG1ðv̂; f̂Þ :¼ ðIN1
þ TN1

Þ�1 f̂

(or by CGNE/GMRES with low tolerances in practice). A full multi-grid method for the solution of
ðINL � TNLÞû ¼ f̂NL is then given by:
v̂
ð0Þ
1 :¼ MGlð0; f̂N1

Þ;
v̂
ð0Þ
l :¼ MGlðPNl;Nl�1 f̂Nl þ R�Nl;Nl�1

v̂
ð0Þ
l�1; f̂NlÞ; l ¼ 2; . . . ; L;

v̂
ðjÞ
L :¼ MGLðv̂ðj�1ÞL ; f̂NLÞ; j ¼ 1; 2; . . .
4.4. Convergence analysis

Due to Lemma 1 and Eq. (16) there exist constants N0,c > 0 such that the iteration operators TM,N :=
(I � TM)�1(TM � TN) are bounded by
kTM ;Nkk k 6 cM�1
for N0 6M 6 N. Moreover, using (12) and Theorem 2, the initial error is bounded by
kuð0ÞN � uNk 6 kðIþ TMÞ�1kk kkðQN �QMÞfkk þ kuM � ukk þ kuN � ukk 6 cMk�lðkfkl þ kukl�1Þ.
Therefore, the convergence of the two-grid iteration can be estimated by
kuðjÞN � uNkk ¼ kT
j
M ;N ðu

ð0Þ
N � uN Þkk 6 kTM ;Nkjkuð0ÞN � uNkk 6 cM�jþk�lðkfkl þ kukl�1Þ. ð22Þ
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We want to choose the number J of multi-grid iteration such that (18) is solved at least up to an accuracy of
the discretization error,
kuðJÞN � uNkk 6 �kuN � ukk ð23Þ

with some � 2 (0,1]. If we choose
M � N h ð24Þ

with a constant h 2 (0,1), then the estimates (15) and (22) of the discretization error and the two-grid conver-
gence imply that (23) is achieved asymptotically if
h >
l� 1

l� 1þ J
.

Using the convergence of the two-grid method, one can prove convergence of the multi-grid method in the
standard way (see [14,15]). The multi-grid method converges if (24) is satisfied for any two subsequent levels
with h sufficiently large and if the coarsest grid is sufficiently fine.

4.5. Complexity analysis

According to (18), the implementation of one matrix–vector product for the operator I + TN requires one
backward vector FFT, one forward vector FFT and one forward scalar FFT. This makes a total of 7 scalar
FFTs. Each FFT costs O(N3 ln(N)) arithmetical operations, and all other computations are of order O(N3).

It follows from (19) that the error kuðjÞN � uNk of the CGNE iteration is comparable to the discretization
error cNk�l after at most j � lnN iterations. Since one iteration costs O(N3 lnN) arithmetical operations,
the total cost of the algorithm is
OðN 3ðlnNÞ2Þ

if the CGNE-iteration is used. For a two-grid method the same number O(lnN) of CGNE iterations is needed
on the coarse grid. However, with the choice (24) the total cost for solving the coarse grid equation is of order
O(M3 lnM lnN) = O(N3h(lnN)2), which is negligible compared to one FFT on the fine grid. Hence, the total
cost of a two-grid iteration is of order
OðN 3 lnNÞ.

For a multi-grid method satisfying (24) for any two subsequent levels, the total cost is also asymptotically
dominated by the FFT operations on the finest grid. Therefore, in this asymptotic sense nothing is gained
by introducing a multi-grid method. However, the above analysis does not keep track of the wave number.
In our numerical experiments with high wave numbers we observed speed-up of up to 40% by introducing
additional grids.

5. Numerical study of the forward solver

Table 1 shows the convergence of our forward solver as the discretization level N tends to infinity. The com-
putations were carried out on a 3 GHz Pentium IV machine with 2 GB RAM. The refractive index was
aðx1; x2; x3Þ ¼ � exp 1� 1

1� ðx21 þ ðx2 � 0:1Þ2 þ ðx3 þ 0:1Þ2Þ=0:81

 !
ð25Þ
for x21 þ ðx2 � 0:1Þ2 þ ðx3 þ 0:1Þ2 6 0:81 and a(x) = 0 else. The incident field was chosen as EiðxÞ ¼ eix1p with
polarization pT = (0,1,0), and the measurement point was x̂T ¼ ð1; 0; 0Þ. Fast convergence is clearly exhibited.
For N = 192 we guess the number of correct digits by a comparison with N = 180. The iterations were stopped
when the relative residual error was smaller than a tolerance of 5 · 10�14. With this tolerance all digits shown
in Table 1 agreed for CGNE and GMRES. As expected from (19), the number of CGNE/GMRES iterations
is almost independent of the discretization level N. Our computer ran out of memory for N = 192 with CGNE
and GMRES applied to Eq. (18).



Table 1
Convergence of the forward solver for j = 1

N CGNE/GMRES applied to (18) Two-grid method

ReE1ðx̂Þ � p CGNE # Time (s) GMRES # Time (s) ReE1ðx̂Þ � p M Time (s)

24 �0.061307198 27 0.8 9 0.4 �0.061306584 8 0.1
48 �0.061365886 27 6.9 9 3.5 �0.061365836 16 0.8
96 �0.061366716 27 59.8 8 27.7 �0.061366708 24 7.1
192 – – – – – �0.061366653 36 81.4

The columns labeled with # contain the number of matrix–vector products with TN or T�N .

Table 2
Convergence of the forward solver for j = 40

N GMRES applied to (18) Two-grid method

ReE1ðx̂Þ � p GMRES(40) # Time (s) ReE1ðx̂Þ � p M J Time (s)

48 �0.75395587 73 32.8 – – – –
96 �0.75475045 74 276.9 �0.75475601 48 2 84.4
192 – – – �0.75475585 48 4 216.2

The columns labeled with # contain the number of matrix–vector products with TN or T�N .

Table 3
Dependence of the number of iterations on the wave number

j 1 5 10 15 20 25 30 35 40 45 50

GMRES 8 12 23 34 47 55 62 68 74 80 90
CGNE 23 51 155 359 >400
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For the two-grid method we performed J = 2 iteration and used GMRES on the coarse grid. M was chosen
as an integer close to Nh, h ¼ 2

3
with a prime factorization of the form M = 2n3m. With these choices the error

introduced by the two-grid iteration was always of the order of the discretization error. Moreover, the two-
grid method is significantly faster and less memory intensive than CGNE and GMRES applied directly to (18).

Table 2 shows the convergence of our method for the wave number j = 40. Here, a finer coarse grid of at
least M = 48 was necessary to represent the solution sufficiently accurately on the coarsest level. We used the
inhomogeneity (25) shrinked by a factor 2 such that the diameter of the support was bounded by 1. We also
observe fast convergence for this larger wave number.

Finally, in Table 3 we observed the dependence of the number of iterations on the wave number. It turns
out that the number of CGNE iteration grows much faster than the number of GMRES iterations. Therefore,
CGNE is not suited for large wave numbers. For GMRES, we observe roughly a linear dependence of the
number of iterations on the wave number.

6. The Fréchet derivative and its adjoint

For the solution of the inverse scattering problem we need to consider the operator
F : DðF Þ � Hs
0ðBqÞ ! L2ðS2Þ3; F ðaÞ :¼ E1;
which maps a perturbation a = 1 � n of the refractive index n to the corresponding far-field pattern E1 of the
scattered field. For simplicity, we first consider this operator for a fixed incident wave Ei. Since we need a Hil-
bert space setting for the algorithms to be discussed below, we chose the domain of definition D(F) of F to be
the set of all functions a in the Sobolev space Hs(Bq) with a < 1. Moreover, we let s > 5

2
such that

Hs
0ðBqÞ � C1;a

0 ðBqÞ for 0 < a < 5
2
. With the notations introduced above we can write down F in closed form
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F ðaÞ ¼ ZaðIþ Ka 	 þgradKb � 	Þ�1ðvEiÞ.

Using this formula, it is a simple task to show that the operator F is Fréchet differentiable (see, e.g. [2, Prop.
2.1] for a similar argument). To obtain a formula for the Fréchet derivative F 0[a]h, we differentiate the periodic
Lippmann–Schwinger equation (8) with respect to a. This yields the following formula for the Fréchet deriv-
ative u0a;h at a in the direction h of the periodic version u = ua of electric field E
u0a;h þ Kðau0a;hÞ þ gradK
grada

j2ð1� aÞ � ua;h
� �

¼ Rah;
where the right hand side is given by
Rah ¼ �KðhuaÞ � gradK
1

j2
gradhþ h

grada
1� a

� �
� ua

1� a

� �
.

Hence, we can compute u0a;h by solving the periodic Lippmann–Schwinger equation (8) with a different right
hand side. The derivative of F is given by
F 0½a
h ¼ Zðau0a;h þ huaÞ.

The adjoint of the operator F 0[a] with respect to the L2-norm is given by
F 0½a
�L2g ¼ ua � Z�gþ R�a;L2ðIþ aK� 	 �bK� div 	 Þ�1aZ�g

with the adjoint operators
ðZ�gÞðyÞ ¼ �j2

Z
S2
eijy�x̂ðx̂� gðx̂Þ � x̂Þdsðx̂Þ
and
R�a;L2u ¼ �ua � K
�uþ 1

j2
�divþ ðgradaÞ

1� a

� �
ua

1� a
K� divu.
Obviously, the operator I + A* + B* in (8) can be approximated by Iþ A�N þ B�N , and the error estimate (14) is
also valid for the adjoint operators (again all adjoints are with respect to the L2-inner product). It is important
for the stability of the inverse solver to use the adjoint F 0[a]* of F 0[a] with respect to the Hs-norm instead of the
L2-adjoint F 0½a
�L2 . If j: H

s(Bq) W L2(Bq) is the embedding operator, these two adjoint operators are related by
F 0½a
� ¼ j�F 0½a
�L2 .

An efficient method to implement j* for Sobolev indices s 2 N has been described in [2] using the Gram matrix
for a basis of tensor products of splines and spherical harmonics.

Remark. If a is small, then ua � vEi, and the scattered field ua � vEi is small compared to ua. Since vEi does
not depend on a, u0a;h is typically small compared to ua as well. Hence, we can use the approximation
F0[a]h � Z(hua), which is much cheaper to compute since it avoids solving another operator equation. It is an
improvement of the Born approximation F 0[a]h � Z(hvEi). However, both approximations break down if a or
j are medium or large. In particular, we could not use this approximation in the examples reported below.
7. The inverse problem

We now consider the problem to recover the refractive index of a medium from measurements of far-field
patterns of scattered electric waves. Since the far-field pattern E1 for one incident field is a function of 2 vari-
ables whereas the unknown refractive index is a function of 3 variables, we have to use many incident fields.
Consider incident fields of the form
EiðxÞ ¼ pe�ijx�d
with direction d 2 R3, |d| = 1 and polarization p 2 C3 such that p Æ d = 0. The corresponding far-field patterns
are denoted by E1ðx̂; d; pÞ. Due to the linearity of the partial differential equation, the dependence of the far-
field pattern E1 on the polarization p is linear, so we can write



T. Hohage / Journal of Computational Physics 214 (2006) 224–238 235
E1ðx̂; d; pÞ ¼ e1ðx̂; dÞp

with a matrix e1ðx̂; dÞ 2 C3�3. With the convention e1ðx̂; dÞd ¼ 0, the matrix e1ðx̂; dÞ is uniquely determined.
Since x̂ � e1ðx̂; dÞp ¼ x̂ � E1ðx̂; d; pÞ ¼ 0 for all p, e1ðx̂; dÞ can be described by only 4 complex numbers.

With this notation we can formulate the inverse problem as an operator equation
F ðaÞ ¼ e1 ð26Þ

with the operator
F : DðF Þ � Hs
0ðBqÞ ! L2ðS2 � S2;C3�3Þ; s >

5

2
;

which maps a perturbation a(x) of the refractive index n(x) to the far-field matrix e1ðx̂; dÞ for all directions
x̂ 2 S2 of the incident field and all measurement directions d 2 S2. It is straightforward to accommodate for
partial data in this formalism. It is known that the operator F is one-to-one (see Colton and Päivärinta
[16]), i.e., the refractive index is uniquely determined by the far-field patterns of all incident plane waves.

In practice only noisy data e1d will be available. To be able to construct a convergent regularization method
we need to know a bound d on the noise level (see [17, Theorem 3.3])
ke1d � e1kL2 6 d.
7.1. Preconditioned Newton method

The iteratively regularized Gauß–Newton method [17] for the solution of (26) consists in applying Tikho-
nov regularization with initial guess a0 to the Newton equation F 0½an
ðanþ1 � anÞ ¼ e1d � F ðanÞ. Hence, the reg-
ularized Newton iterates are computed by solving the quadratic minimization problems
anþ1 ¼ argmina2Hs
0
ðBqÞkF

0½an
ða� anÞ � e1d þ F ðanÞk2 þ anka� a0k2. ð27Þ
For local convergence results of this method we refer to [18,19]. We have always chosen the regularization
parameters of the form an ¼ 2

3

� �n
a0. This simple rule yielded good results in all our examples. To globalize

the convergence of the method, other choices of the regularization parameter and step size control methods
may be useful (see [20]).

To avoid the computation of a matrix for the Fréchet derivative F 0[an], we solve the minimization problems
(27) iteratively by the conjugate gradient method. This requires only the applications of the operators F 0[an]
and F 0[an]* to given vectors as described in Section 6. Since an! 0 as n!1, the condition number of the
system (27) gets very large, so many CG-steps are required. The number of CG-steps can be significantly
reduced by using a preconditioner. As explained in [2], a suitable preconditioner can be constructed by exploit-
ing the close connection between the CG and the Lanczos method to compute approximations to the largest
eigenvalues and -vectors of F 0[an]*F

0[an]. This method has been used in our computations.

7.2. Numerical results

We have tested our method for the refractive index given by
nðx1; x2; x3Þ ¼ 1� 0:25 sinð5ðx1 � 1Þx3 þ x2ðx2 � 2ÞÞ
1:2� cosðx1ðx1 � 2Þ þ ðx3 � 0:5Þx3ðx3 þ 1Þ þ x2Þ

� vð�0:8ð1:5x1 þ x2 þ x3 � 0:5ÞÞvð2:5ðjxj2 � 0:55ÞÞ
with the cut-off function vðtÞ :¼
P0

j¼�1v0ðt � jÞ=ð
P1

j¼�1v0ðt � jÞÞ and v0(t) := exp(�1/(1 � t2)), |t| < 1,
v0(t) := 0 else (see Figs. 1–3). The wave number was j = 5. In Figs. 1 and 2, we used 80 incident waves from
40 different direction of an angle of 6p/3 to the positive z-axis. The corresponding far-field patterns were eval-
uated in the same 40 directions, yielding a data set of 80 · 80 complex numbers. In two experiments we added
1% and 10% white noise to these synthetic data and stopped the Newton iterations using the discrepancy prin-
ciple after 19 and 14 iterations, respectively. The Newton iterations were started at a0 ” 0 with regularization



Fig. 1. Reconstruction with relative noise level d = 10�2 and limited aperture.

Fig. 2. Reconstruction with relative noise level d = 10�1 and limited aperture.
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parameter a0 = 1. The discretization level for the electric field was N = 32, whereas the refractive index was
represented by 2496 unknowns using tensor products of spherical harmonics of order 612 and splines of de-
gree for 4 with 30 knots in radial direction (see [2]). We have chosen the Sobolev index s = 3 to meet the
requirement s > 5

2
. The computations were carried out on a 3 GHz Pentium IV machine with 2 GB RAM

and took about 5 h for the noise level of 1%. Thanks to the use of the preconditioner the average number
of CGNE iteration per Newton step was only 3.95. With the rather high noise level of 10% we could still re-
cover the main features of the scatterer, but the reconstruction was smoothed out and details got lost. With 1%
even some finer details such as the little valley in the lowest row of Fig. 1 could be reconstructed correctly.

In a third experiment, we tested the convergence of our iteration scheme on a data set with a very small
noise level of d = 10�4. Here, we used 100 plane incident waves from 50 direction and 50 measurement points
for the far-field points with full aperture. To guarantee sufficient accuracy of our forward solver, the discret-
ization level was chosen as N = 96 corresponding to 2654.208 complex unknowns for the electric field for each
incident wave. For the refractive index, we used the same approximating subspace as above with the much



Fig. 3. Reconstruction with relative noise level d = 10�4 and full aperture.
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smaller dimension 2496. This is sufficient as the best L2-approximation to the true refractive index in that sub-
space was much more accurate than our reconstructions. The computations were carried out in parallel on a
cluster of 12 Linux PCs. Since the computational cost of the preconditioned Newton iteration is largely dom-
inated by the evaluations of F, F 0[an]h and F 0[an]*g and since the forward solutions for different waves can be
carried out in parallel by different processors, the parallel speed-up is almost proportional to the number of
processors as long as the number of waves is much larger than the number of processors. Also for this small
value of d it was possible to reduce the residual kF ðanÞ � e1d k to the order of the noise level, but the compu-
tations took about 4 days. The reconstruction of the refractive index shown in Fig. 3 is only about a factor 2
better than the reconstruction with d = 10�2 in Fig. 1. This drastically illustrates the severe ill-posedness of the
problem.
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[3] F. Natterer, F. Wübbeling, A propagation–backpropagation method for ultrasound tomography, Inverse Problems 11 (1995) 1225–
1232.
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